摘要:通过分析适用于负荷预测的数学方法,构成能在线实时运行的负荷预测系统。为提高精度,采用自修改机制和加权组合方法。考虑了天气因素对电力负荷的影响,并给出实际电网的计算结果。
关键词:回归分析,时间序列,短期负荷预测
1前言
随着电力系统的结构日趋扩大和复杂,为保证电力系统运行的安全性和经济性,要求调度运行人员能够迅速、准确、全面地掌握电力系统的实际运行状态,预测和分析电力系统的运行趋势,对电力系统运行中发生的各种问题作出正确的处理。EMS高级应用软件(PAS-PowerAdvanceSoftware)正是辅助调度员完成上述任务的有力工具,也是EMS系统的重要组成部分。该应用软件包括实时网络建模和网络拓扑、负荷预测(LF)、自动发电控制(AGC)和发电计划、实时经济调度、状态估计(SE)、调度员潮流、安全分析(TransientStabilityAnalysis)、电压无功优化、短路电流计算、安全约束调度、最优潮流(OptimalPowerFlow)、调度员培训仿真系统(DTS)等。
短期负荷预测在电力系统运行中起着重要作用,在制定机组组合方案、地区间的功率输送方案和负荷调度方案时都需要进行负荷预测。它不仅能为电力系统的运行提供实时信息,使调度人员随时掌握电网运行状况,同时也可为电力系统安全分析和发电计划提供基本信息。
2数学模型
随着计算机技术的发展,计算速度和精度逐渐提高。目前能用于负荷预测的方法很多,但由于电力负荷有其独有特点,很难找到一种通用的负荷预测模型。因此在进行负荷预测时,不能仅用某一种固定的方法,而要把多种方法进行比较,利用一种较优的方法或者几种方法的加权组合来得到最后结果。下面介绍两种对负荷预测比较适用的数学算法。
2.1线性回归分析法
线性回归分析法是研究不同变量之间的相互关系。我们在研究实际问题时,常常会碰到许多相互联系、相互制约的变量,有些变量之间具有完全确定的函数关系,而有些变量之间虽有一定关系,但并不能用确定的函数关系式来表达。这就要采用线性回归分析法来分析这些变量之间的相关关系,利用得到的经验回归方程式来表示变量之间的定量关系。负荷预测的任务是根据历史数据分析电力负荷同影响因素之间的关系,得到回归方程式,,预测系统将来负荷值。系线性回归方程式表示如下,
(1)
电力负荷值,因变量;
影响负荷的因素,自变量;
回归系数。
对于元线性方程式涉及个自变量,用表示表示个自变量,表示因变量,共有组侧量值,即:
当时,是二维平面上的点,分布在一条直线附近。
当时,是三维空间上的点,分布在一个平面附近。
当m>2时,没有几何直观性,是一个回归超平面。
要确定线性回归经验方程式,也就是根据组观测资料来确定的问题。
利用最小二乘法,令:
式中是因变量的观测值
把式(3)代入式(2),再使来确定a和即:
式(4)中及是已知的观测值数据,是未知数,把式(4)对取偏导数并令其为零,就得到以的值,然后就可得到线性回归方程式
根据这个方程式就可利用自变量的预报值(通常可以预先知道)来推算出因变量的未来值。在进行电力负荷预测珍担据界史负荷数据及影响负荷的气象因素列出两者关系式,推算将来一段时间内的系统负荷值。
2.2时间序列法
电力负荷是一串随时间变化相互关联的数据序列,即负荷数据之间存在着依赖关系,这种关系一旦被定量表示出来,就可以用系统的过去负荷值预测将来负荷值。
上面所述的线性回归模型表达式:
(6)
表示不同变量之间同一时刻的相关性,是一种静态模型。
还有一种表达式:
(7)
表示不同时刻变量自身之间的相关性,即变量回归到自身,是一种动态模型。
因此(6)式和(7)式形式上非常相似,但它们有本质区别。更一般的线性动态模型:
(8)
也称为ARMA模型。
式中,称为自回归系数,为自回归阶数。
称为滑动和系数,为滑动和阶数。
当时,模型为自回归模型,记为;
当时,模型为滑动和模型,记为。
式(8)中的是连续一段时间的用电负荷值;是一零均值白噪声序列。
一般情况下,电力负荷是非平稳时间序列,可以采用差分方法来获得平稳序列,然后就可按平稳序列的预报方法进行模型识别和参数估计。
上面讲述的两种方法中,线性回归分析法反映出电力负荷同影响因素(主要是天气因素)之间的相关关系。时间序列法能够体现电力负荷变化的连续性规律。因此这两种方法对电力负荷预测很有效。
3数据库管理
数据库的建立是负荷预测的关键部分,一个数据库的好坏直接影响到负荷预测系统的可用性,一个合理的数据库可改善预测精度和速度,提高系统效率。负荷预测用的数据库有两类:离线数据库和在线数据库。
离线数据库主要是记录历史(一年或数年)负荷数据和历史气象数据,用来离线分析负荷与影响因素及负荷本身之间的相关关系,它是建立负荷预测数学模型的依据。对于已经有SCADA系统的地区,历史负荷数据可直接从SCADA系统中获得。对于仍用抄表方法的地区,可从调度报表中摘录下来,输入计算机存盘保存。而气象信息可以从当地气象部门的气象数据库中获取。
在线数据库主要记录最近数周的负荷及气象数据。规模远小于离线库,为加快运行速度,要求在线库规模尽可能小并保证库内数据是最新的。
4预测内容
(1)系统的日负荷峰值
预测将来(一周内)某天的系统负荷峰值。
(2)一天中某一时刻负荷值。
预测将来(一周内)每小时(或半小时)的系统负荷值。
(3)系统每小时或半小时电量
预测将来(一周内)每小时或半小时的系统用电量。
图1自修改机制流程图图2加权组合框图
(4)系统一天或一周电量
(5)对于节假日,如元旦、春节、五一、国庆,提前一段时间预测节日期间系统负荷值。
另外,也可作为SCADA/EMS的一个子功能,为电力系统应用软件提供基本信息。
5提高预测精度
5.1自修改机制
通过离线分析、计算得到的数学模型,随着时间推移,要给出一个不变的规则或常数是困难的。这种情况在环境变化较大的季节或气候不正常的日子里是十分明显的。为此,需要开发一个自修改机制,当所作预报的精度超出事先规定的范围时用以采取一些修改措施。
首先计算最近3天内的平均误差,若小于5%则返回,不进人修改机制。若大于5%,则启动自修改机制,利用最近一段时间内数据来修正模型参数,然后再用最近3天数据进行验证,如果预测结果较好,则退出修改机制。否则继续进行修改,直至达到要求的精度为止。如图1。
图中B为预测模型中的系数矢量。
为离线计算得到模型的系数戈量。
为上一次计算的系数矢量。
为本次计算得到的系数矢量。
5.2多种方法加权组合
由于电力系统内的负荷复杂,用某种固定预测方法得到的结果,往往达不到要求的精度。用某种方法预测可能有时精度很高,当条件改变时精度就差了,即很难找到一种方法在任何条件下都能保证得到良好的预测结果。因此利用多种方法之间的互补效应来提高预测精度。图2给出了多种方法加权组合的框图。比较每种预测方法近3天的预测误差平均值,误差小则权重大,误差大则权重小,然后把几种预测结果加权组合。
6计算结果
下面是本系统在电网运行一个星期的结果,运行中用到的负荷实时数据是通过网络从SCADA系统中传送过来的,气象信息是从气象台获取后输入的。
表中的数据是实际系统运行一周后的统计结果,其结果满足实际应用要求。
7结论
本文主要论述了短期负荷预测的几种有效方法,负荷预测是电网能量管理系统(EMS)的一个重要组成部分。
参考文献:
1冯英;基于智能控制的短期电力负荷预测方法研究与应用[D];华北电力大学(北京);2006年
2严华,吴捷,马志强,吴列鑫;模糊集理论在电力系统短期负荷预测中的应用[J];电力系统自动化;2000年11期