摘要:通过分析小波概率神经网络(WPNN)与数据融合技术在工程结构损伤识别中的应用原理,建立了基于小波概率神经网络和数据融合技术的模型。对悬臂板结构进行了数值模拟试验,运用损伤单元数据作为输入向量训练了WPNN与数据融合的损伤识别模型,并选取4个单元作为检验样本进行检验,检验的结果与数值试验分析吻合较好,表明,该方法在工程结构的损伤识别中有较好的应用价值。
关键词: 结构损伤,损伤识别,悬臂版,小波概率神经网络(WPNN),数据融合
1 引言
当前,世界范围内建筑工业的重心正在从大规模新建转向新建与维修加固并举[1]。土木工程结构如房屋建筑、桥梁、海洋平台等在投入使用之后,由于地震、火灾、咫风等自然灾害或一长期作用的疲劳、腐蚀等原因而产生不同程度的损伤,结构损伤经过长期的累积必然会导致结构发生破坏或使用性能降低[2]。结构的损伤检测、诊断是土木工程结构经历自然灾害、长期作用后进行维修、加固的基础,是一项复杂的系统工程,其核心的问题是基于什么理论进行损伤的检测[3]。
在损伤识别以及其它的信息获取及处理过程中,信息的确定程度主要取决于选用传感器的种类、所选择的方法以及信息源本身[4]。进一步说,单一传感器获得的信息通常是不完整、不精确的。多传感器数据融合技术从多源信号中获取信息,减小了信息的不确定度,助于帮助制定决策。无损检测数据融合近几年发展很快。来自不同国家的很多人对它表现出极大的兴趣,他们已经提出了多种适用于无损检测数据融合的模型[5]。本文给出了一种新的基于小波概率神经网络(wavelet probabilistic neural network , WPNN)和数据融合的结构损伤检测方法模型,并给出了该模型在结构损伤识别中的应用。
2 基于频率的结构损伤识别原理
运用试验测试的数据来确定结构系统运动方程中的参数叫做参数识别。参数识别的典型过程包括在结构系统的模态试验中测量由于外部激励作用下的结构响应;从响应的数据中直接地或通过数据处理技术确定系统的动力特性,诸如自振动频率和振型。结构的频率相对振型来说更容易较准确测量,而且能够反映结构整体特征,使其成为结构损伤识别中的重要特征参数。由于系统的自振动频率和振型是系统参数如质量和刚度的函数,所以可以将实验得到的结构动力特性与数学模型预测的结构动力特性进行比较从而确定系统参数[6]。结构损伤探测的基本方法正是基于以上的基本概念而产生的。
当不考虑阻尼时,结构振动的特征值方程为
3 小波概率神经网络与多传感数据融合技术原理
目前,基于动力响应的各种智能损伤诊断技术得到研究,但这些技术存在着识别精度不高或适用条件等缺陷。迅速发展的数据融合技术具有充分利用各个数据源包含的冗余和互补信息的优点,可以提高系统决策的准确性和鲁棒性。基于小波概率神经网络(wavelet probabilistic neural network , WPNN)和数据融合的结构损伤检测方法将两者有机结合,扬长避短在损伤识别中显示出独有的优越性。
为了充分发挥数据融合与 WPNN 的优点,提出了基于 WPNN 与数据融合的损伤检测模型见图1,它首先将来自传感器 1 的结构响应进行数据预处理、特征提取,采用小波理论,获得该传感器的小波能量特征向量;依次类推,获得其他传感器的小波能量特征向量;然后将这些小波能量特征向量放入WPNN中,进行神经网络训练及融合计算;最后根据最大的概率密度函数值得到融合损伤识别结果及损伤类型。
图1 基于WPNN与数据融合技术的损伤识别模型
可见,基于 WPNN 与数据融合技术的损伤识别与诊断过程是根据从目标的检测量得到损伤特征向量(模式),经过数据融合分析计算与处理,进行损伤识别及损伤定位的过程。
4 结构损伤在线检测原理
结构损伤检测的核心技术是模式识别,而模式识别就是将理论分析得到的损伤模式特征库与实测的模式进行匹配。一般先通过分析各种不同的损伤序列或破坏模态来建立模式库,然后观察实测振动信号的变化,并将它与可能发生损伤的模式数据库进行比较,选择最相似的模式。神经网络本身具有模式匹配与记忆的能力,而且对于具有一定噪声的模式,识别效果更好。运用模式识别进行损伤检测与用神经网络进行损伤检测是两种不同的诊断方法,但二者密切相关,可以用神经网络来实现模式识别的损伤检测。结构损伤的在线检测原理如图2所示。
5 数值模拟实验分析
为了验证神经网络技术在结构损伤检测中的有效性,利用ANSYS有限元程序模拟钢筋混凝土悬臂板,物理参数为:板长lm,宽度0.5 m,密度为7.85 ×103 kg/m3,杨氏模量2.02 ×105 MPa,泊松比0.3。数值模拟试验模型图如图3所示。以单元刚度折减15%来模拟结构的损伤,并忽略结构损伤引起的结构质量的改变。
悬臂板无损伤时前三阶频率为: =8.3206Hz, =35.6900Hz, =51.7780Hz。(理论值为 =8.5620Hz, =36.8200 Hz, =53.2900Hz),用16个位置刚度分别降低5%来模拟单元的损伤情况。
图2 结构损伤在线检测原理
图3 数值试验单元网格划分图
由于结构中某类损伤的发生可能只与几个监测参数相关联,即只跟损伤状态样本中与该损伤状态模式对应的非零特征量相关;同样,某一传感器的输出数据也可能与几类损伤状态模式有关。为了充分利用各传感器的输出数据进行损伤检测,采用1、3、4、5、6、8、9、10、12、13、14、15、16单元所得到的训练样本进行损伤检测与识别模型的训练,基于 WPNN 与数据融合的损伤识别模型的训练样本数可以确定出来,检验样本数为2、7、10、11单元的数据。WPNN模型的拓扑结构为20-165-5-5,即输入层神经元个数为 20,模式层神经元个数为 165,求和层和决策层中的神经元均为5 个。模型配置训练好后,用另外2、7、10、11这4个检验样本进行检验,基于 WPNN 与数据融合损伤检测方法的识别正确率较好。
6 结论
多传感器数据融合损伤识别性能较好,使用基于 WPNN 与数据融合的损伤识别方法能够提高损伤识别与诊断的准确性与可靠性。多传感器所采集的信息具有冗余性,当其中有一个甚至几个传感器信息不可靠时,经过数据融合处理后会使基于 WPNN 与数据融合的损伤识别方法在利用这些信息时具有良好的容错性。总之,利用神经网络进行特征级数据融合对结构损伤进行诊断与识别,具有很大的潜力,值得进一步在理论与实际应用上开展深入研究,这种方法也必定将成为结构损伤诊断研究领域的新方法。
参考文献
[1] 李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社, 2-4
[2] Tsou P., Shen M. H. Structural damage detection and identification using neural networks [J]. AIAA Journal, 1994,32: 176-183
[3] 杨英杰,虞和济.结构损伤状态识别的神经网络方法[J].东北大学学报,1994,15 (2):210-214.
[4] 周先雁,刘希,沈蒲生.用含裂纹的梁单元识别混凝土框架结构损伤[J].振动工程学报,1999,12(1):115-119
[5] 于德介,李佳升.一种基于实测模态参数的结构破损诊断方法[J].湖南大学学报,1995,22 (4): 121-128