摘要:作者在南疆铁路增建二线施工过程中,对超大区间采用的基于光通信基础的铁道信号安全信息传输系统(WBS-C)系统代替传统区间自动闭塞电路进行了认真的探讨,并结合施工实际从经济、技术、安全、效率等方面进行了解析,对国内类似长大区间信号信息传输系统应用具有指导意义。
关键词:铁道信号,信息安全,传输系统
南疆铁路是新疆对外沟通交流的客货运重要通道,是南疆生产生活物资出入新疆的必经之路,由中铁七局承建的南疆铁路轮阿二线工程东起巴音郭楞蒙古自治州轮台县,西至阿克苏地区阿克苏市。全线既有14个车站,全长526km,最长单线区间羊塔克库都克车站至咸水沟车站间38公里,全线采用64D半自动闭塞方式,列车放行时每一个区间只能停留一趟列车,列车到达临站复原后方可同意放行下趟列车,列车运行时速不超过80公里,日均放行列车12对,长大区间使得运输效率极低,远远不能满足需求。
随着国家西部大开发和新一轮支援新疆建设的进展,南疆铁路运输效率低、行进速度慢的弊端进一步显现,国家投入大量资金进行南疆铁路增建二线建设,轮阿段设计速度160公里,日通过列车120对,其中铁道信号工程采用国内高速铁路及客运专线普遍采用的ZPW2000A自动闭塞系统,区间信号机四显示,满足安全前提条件下,最大可能的缩短列车间隙距离及时间,极大地提高运输效率。
采用自动闭塞制式的同时,缺陷也显示出来,发达地区人口密集,两个车站距离近,铁道信号自动闭塞系统采用电缆传输,信息量小,电缆传输的极限长度原则上为15公里,超过该极限传输长度,区间电压降使得信号显示和轨道电路可靠性大大降低,新疆的特殊地理状况,526公里的区间几乎全部都是无人的戈壁荒滩或者沙漠地区,每隔15公里设立一个车站,不仅要投入大量人力物力财力,而且值班工人的生活保障也是问题。因此设计采用了撤销一部分条件极其艰苦的车站,使得原有14个车站减少为7个,同时增加26个无人值守中继站,采用控制站和无人值守中继站相结合的站间设置方式,控制站和中继站间信息传送采用基于光通信技术的安全信息传输系统(WBS-C),控制站的控制信息经电光信号转换后,利用光纤传播至中继站,中继站对光信号进行解码,驱动控制子系统,然后依次传递至下一控制站,代替4线制改方电路,这是一种新型闭塞设备,既能提高系统可靠性、又降低投资成本,必将在越来越多的铁路信号工程中应用。
一、安全信息传输系统(WBS-C)工作的基本原理
33个车站(含中继站)之间进行站间联系信息及方向电路信息的传输采用基于光缆传输的站间安全信息方案,取代传统以信号电缆及继电器联锁方式实现两站间的自动闭塞站联信息和方向电路信息的传输,是信号技术发展的又一项创新。WBS-C闭塞传输设备的主要功能是区间自动闭塞区间方向控制功能和区间安全信息传输功能。该
系统可以完成对外部设备状态信息的采集,与对方站进行通信,对输入信息和对方站信息进行逻辑运算,将运算结果对外输出和传输到对方站。
采用基于光通信技术的安全信息传输系统(WBS-C),它是以雅克拉、库车、新和、羊塔克库都克、喀拉玉儿滚、阿克苏中心站计算机联锁系统为核心,通过安全局域网(ET-NET)实现本地中心站及相邻无人值守中继站的安全控制,系统符合中国铁路信号联锁技术条件,满足故障—安全使用要求。
如图 “南疆铁路库阿增建二线工程区域计算机联锁设备配置示意图”所示,由设在中心站的控制台子系统、电务维护子系统、联锁子系统和分别设各个控制站的输入输出接口(电子终端),以及中心站到各中继站之间的安全局域网组成。
信号采集装置从铁路信号系统逻辑电路中采集所需继电器信息发送给所需的信号设备。为了保证行车安全,信号采集装置应保证采集信息的安全性、可靠性、及时性、准确性。信号采集装置采用安全结构保证获取信息的安全可靠。
1、安全信息传输系统(WBS-C)采集装置具备以下特点:
(1)、采用二取二技术来保证信息的安全;
(2)、可使用双套信号采集装置,互为冗余提高可用性。
(3)、提供独立双通道COM口(RS422串行总线)输出采集信息,保证其可靠性和可用性;
(4)、设备采用自检技术、差异性比较技术、安全编码技术和动态编码等技术来保证软件通信的安全性;
(5)、由CPU子系统和采集输入子系统构成。
(6)、预留监测接口与监测设备连接。
(7)、充分考虑设备的可扩展性。
2、安全信息传输系统(WBS-C)系统构成
信号采集装置由2取2组合式安全CPU子系统和采集子系统构成。CPU子系统和采集子系统分别提供24V电源输入接口,分别为各自子系统供电。采集子系统通过采集线缆及回线获取组合架上继电器状态信息并提供给CPU子系统。CPU子系统把采集信息2取2运算并通过串口发送给站所需采集信息的信号设备。信号采集装置有自检测功能,在自检测发现故障时发送故障状态给信号设备。
二、传统闭塞方式和WBS-C的优劣分析
1、传输通道分析
(1)、 传统站间联系电路方式
ZPW-2000A系列复线四显示自动闭塞区段,其站联及方向电路传输通道一般采用国产SPTYWL23 型综合扭绞数字信号电缆。为节省电缆,站间联系电路采用JWXC-1000型和JPXC-1000型继电器,为防止电路接点转换过程中信号闪灯,JWXC-1000型继电器需要设计JWXC-H340型复示继电器。
(2)、 基于光通信技术的站间安全信息传输方式
站间安全传输系统采用计算机和现代通信技术,以安全计算机为核心,通过继电器与联锁及自动闭塞系统接口,在两站或多站点间利用光缆进行信号信息交换,完成区间信息采集、传输及站间联系信息传输功能,同时根据信号系统制式可实现对区间运行方向改变的控制功能。
2、传输信息分析
(1)、传统站间联系电路
以区间分界点为边界,分界点运行方向前方分区向后方分区传输信号机灯丝DJ、轨道继电器1GJ~7GJ、小轨道继电器XGJ信息;分界点运行方向后方分区向前方分区传输轨道继电器GJ、小轨道继电器XGJ信息。当站间距离较近时,还应考虑进站信号机LXJ、ZXJ、YXJ、LUXJ、TXJ、1DJ、UUSJ的传输信息及出站信号机LXJ等的传输信息。
(2)、方向电路控制信息
为实现双线双方向运行,一般设置四线制改方电路,电路通过四芯信号电缆传输方向电路控制信息,主要含监督区间轨道空闲条件信息JQ、JQH及方向电路控制信息FQ、FQH。
(3)、 WBS-C型站间安全信息传输系统
WBS-C闭塞传输设备在硬件上采用了先进的2取2乘2技术来保证信息的安全传输,采用双套设备冗余来保证系统的高可用性,采用光纤通信保证站间传输的高可靠性;通信软件上采用了自检技术、差异性比较技术、安全编码技术和动态编码技术等来保证软件通信的安全性;该系统充分考虑了系统的扩展性,为今后系统的进一步扩展打下了很好的基础。
WBS-C闭塞传输设备与室外信号设备之间的结合,仍然采用继电器电路,主要有信号点灯电路,道岔控制电路,轨道电路等,结合电路及光电转换模块增加了接口电路的施工难度,精度也要求很高,要求施工工人具有较高的施工能力。
系统采集本站轨道电路及其他相关信息的继电器接点状态,通过光缆双向、点对点传输到邻站,直接驱动相应的继电器。两车站站间联系条件互传,为站间联系电路提供所需信息,并满足故障-安全原则。
采用基于光通信技术的站间安全信息传输系统替代以信号电缆及联锁为载体的传统站间联系电路,完成站间自动闭塞方向电路控制和站间安全信息传输功能,既可降低工程投资,又可提高信号系统的可靠性和稳定性,从而实现电子化站间闭塞和站间联系,推动信号系统向高度自动化、数字化、网络化、集成化方向发展。
参考文献
[1]北京国正信安系统控制技术有限公司.WBS-C闭塞传输设备简介,2008.
[2]铁道部运输局基于光通信的站间安全信息传输系统应用技术条件(暂行),2010.