中文简介
自然与社会离散动力学(DDNS)的主要目标是促进与自然和社会科学中遇到的复杂系统离散动力学相关的基础研究和应用研究之间的联系。离散动力学反映了利用差分方程系统的迭代数学模型来描述复杂系统行为的新趋势。从离散建模的最新发展可以明显看出,这种模型具有更简单的结构,并为生成和描述复杂的非线性现象(包括混沌状态和分形)提供了更多的可能性。然而,这种离散数学方法的进一步发展受到缺乏一般原理的限制,这些一般原理可以在物理学中发挥与变分原理相同的作用。DDNS的目的是阐述这样一个原则,这将有助于更好地理解“离散”的确切含义。时间和空间,并创造了一个新的微积分离散复杂动力学。这一一般原则应该为差分方程的进一步应用提供直接的构造,就像在惰性物质的经典力学中所发生的那样,差分方程可以进一步用于复杂、生活和思维系统的数学建模。该杂志旨在刺激专门针对计算机生成的解决方案和混沌分析的出版物,特别是正确的数值程序,混沌同步和控制,离散优化方法等相关主题。该杂志将为从事复杂系统分析领域的科学家和实践者提供交流渠道,并将促进离散动力方法的发展和使用。
英文简介
The main objective of Discrete Dynamics in Nature and Society (DDNS) is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. Discrete dynamics reflects a new emerging tendency towards utilization of iterative mathematical models systems of difference equations to describe the behavior of complex systems. It has became clear from the latest development in discrete modeling that such models have a simpler structure and provide many more possibilities for generating and describing complex non-linear phenomena, including chaotic regimes and fractals. However, further developments in such a discrete mathematical approach are restricted by the absence of general principles that could play the same role as the variational principles in physics. DDNS aims to elaborate such a principles, which are expected to lead to a better understanding of the exact meaning of ?discrete? time and space, and, to the creation of a new calculus for discrete complex dynamics. This general principles should provide direct construction of difference equations for their further use in mathematical modeling of complex, living and thinking systems as it was happened in classical mechanics for the inert matter. The journal intend to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal will provide a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.
近年期刊自引率趋势图
JCR分区
JCR分区等级 | JCR所属学科 | 分区 | 影响因子 |
Q3 | MULTIDISCIPLINARY SCIENCES | Q3 | 1.457 |
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | Q3 |
近年期刊影响因子趋势图
CiteScore数值
CiteScore | SJR | SNIP | 学科类别 | 分区 | 排名 | 百分位 |
1.60 | 0.274 | 0.568 | 大类:Mathematics 小类:Modeling and Simulation | Q3 | 219 / 303 |
27% |
相关数学SCI期刊推荐
- SemimonthlyAPPLIED MATHEMATICS AND COMPUTATION
- MonthlyAPPLIED MATHEMATICAL MODELLING
- MonthlyMATHEMATISCHE ANNALEN
- Journal of Mathematical Inequalities
- QuarterlyJournal of Noncommutative Geometry
- SemimonthlyMATHEMATICAL METHODS IN THE APPLIED SCIENCES
- SemimonthlyADVANCES IN MATHEMATICS
- BimonthlyAPPLIED MATHEMATICS LETTERS
- BimonthlySIAM JOURNAL ON SCIENTIFIC COMPUTING
- BimonthlyACTA MATHEMATICA SINICA-ENGLISH SERIES