Symmetry Integrability and Geometry-Methods and Applications

所属栏目:SCI期刊 热度:146

Symmetry Integrability and Geometry-Methods and Applications

Symmetry Integrability and Geometry-Methods and Applications

期刊周期:Irregular
研究方向:物理
影响因子:1.088
通讯地址:NATL ACAD SCI UKRAINE, INST MATH, 3 TERESCHCHENKIV SKA ST, KYIV 4, UKRAINE, 01601
官网:http://www.mathnet.ru/php/archive.phtml?jrnid=sigma&wshow=contents&option_lang=eng
审稿速度:偏慢,4-8周

  中文简介

对称性、可积性与几何:方法与应用(SIGMA)范围数学物理中的几何方法李氏理论和微分方程经典和量子可积系统动力学系统和混沌中的代数方法精确和拟精确可解模型李群和代数,表示理论正交多项式和特殊函数可积概率和随机过程量子代数、量子群及其表示辛,泊松和非交换几何代数几何及其应用量子场理论和弦/规理论统计物理和凝聚态物理量子引力和宇宙学

  英文简介

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)ScopeGeometrical methods in mathematical physicsLie theory and differential equationsClassical and quantum integrable systemsAlgebraic methods in dynamical systems and chaosExactly and quasi-exactly solvable modelsLie groups and algebras, representation theoryOrthogonal polynomials and special functionsIntegrable probability and stochastic processesQuantum algebras, quantum groups and their representationsSymplectic, Poisson and noncommutative geometryAlgebraic geometry and its applicationsQuantum field theories and string/gauge theoriesStatistical physics and condensed matter physicsQuantum gravity and cosmology

  近年期刊影响因子趋势图

  相关物理SCI期刊推荐

SCI服务

搜论文知识网的海量职称论文范文仅供广大读者免费阅读使用! 冀ICP备15021333号-3