中文简介
《组合设计杂志》是一份国际期刊,致力于及时发表组合设计理论领域最具影响力的论文。涵盖设计理论的所有主题,以及设计理论在其中具有重要应用,包括:分块设计、t型设计、成对平衡设计和群可分设计拉丁方阵、拟群和相关代数设计理论中的计算方法施工方法应用于计算机科学、实验设计理论和编码理论图论和极值组合学中的图分解、因子分解和设计理论技术有限几何及其与设计理论的关系。设计理论的代数方面。研究人员和科学家可以依靠《组合设计杂志》了解这个快速发展领域的最新进展,并为理论研究和应用提供一个论坛。所有发表在《组合设计杂志》上的论文都经过了同行的仔细评审。订阅《图论杂志》包括订阅《组合设计杂志》。
英文简介
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:block designs, t-designs, pairwise balanced designs and group divisible designsLatin squares, quasigroups, and related algebrascomputational methods in design theoryconstruction methodsapplications in computer science, experimental design theory, and coding theorygraph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatoricsfinite geometry and its relation with design theory.algebraic aspects of design theory.Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
近年期刊自引率趋势图
JCR分区
JCR分区等级 | JCR所属学科 | 分区 | 影响因子 |
Q3 | MATHEMATICS | Q3 | 0.773 |
近年期刊影响因子趋势图
CiteScore数值
CiteScore | SJR | SNIP | 学科类别 | 分区 | 排名 | 百分位 |
1.30 | 0.741 | 1.163 | 大类:Mathematics 小类:Discrete Mathematics and Combinatorics | Q3 | 44 / 85 |
48% |
相关数学SCI期刊推荐
- SemimonthlyAPPLIED MATHEMATICS AND COMPUTATION
- MonthlyAPPLIED MATHEMATICAL MODELLING
- MonthlyMATHEMATISCHE ANNALEN
- SemimonthlyMATHEMATICAL METHODS IN THE APPLIED SCIENCES
- BimonthlyAPPLIED MATHEMATICS LETTERS
- SemimonthlyADVANCES IN MATHEMATICS
- BimonthlySIAM JOURNAL ON SCIENTIFIC COMPUTING
- Journal of Mathematical Inequalities
- QuarterlyJournal of Noncommutative Geometry
- BimonthlyACTA MATHEMATICA SINICA-ENGLISH SERIES