摘要:本文作者分析了桥梁裂缝的分类及产生的原因,提出了防治的对策。
关键词:桥梁裂缝;产生原因;防治对策
一座桥梁从建成到使用,牵涉到设计、施工、监理、运营管理等各个方面。由上述可知,混凝土结构裂缝的种类成因复杂而繁多,甚至多种因素相互影响,但只要采取一定的设计和施工措施,很多裂缝是可以克服和控制的。
1.桥梁混凝土裂缝的分类:
混凝土结构裂缝的种类成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。混凝土桥梁裂缝的种类,就其产生的原因,大致可划分如下几种:
1.1温度引起的裂缝
温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混抗拉强度时即生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。桥面板、主粱或桥墩侧面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和骤然降温是导致结构温度裂缝的最常见原因。在施工过程中,大体积混凝土(厚度超过2.0m)浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入模温度,降低内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇筑以加快散热。一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。
1.2收缩引起的裂缝
混凝土的干燥过程是由表面逐渐扩展到内部的,在混凝土内部呈现含水梯度,因此产生表面收缩大、内部收缩小的不均匀收缩,导致表面混凝土承受拉力,内部混凝土承受压力。当表面的混凝土所受的拉力超过其抗拉强度时,便产生收缩裂缝。
自生收缩是混凝土在硬化过程中,水泥与水发生水化反应生成新的物质而导致自身体积缩小。
干缩是混凝土结硬后,随着表面水分逐步蒸发,温度逐渐降低,混凝土体积缩小。因混凝土表面水分损失快,内部损失慢,表面收缩受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。
塑性收缩。主要发生在混凝土浇筑初期。施工时,混凝土浇筑后,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,此时收缩为塑收缩。在骨料下沉过程中受到钢筋阻挡,即形成沿钢筋方向裂缝。
1.3荷载裂缝
混凝土桥梁在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝产生的原因有:使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。
施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安垒系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。
次应力裂缝是指由外荷载引起的次生应力产生裂缝。实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。次应力裂缝多属张拉、劈裂、剪切性质。次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。裂缝产生的原因有:桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。在长跨预应力连续粱中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。例如两桥拱脚设计时常用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝。
1.4施工质量和材料质量引起的裂缝
在混凝土结构中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位和走向、裂缝宽度因产生的原因而异。如混凝土搅拌、运输时间过长,使水分发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易发生裂缝,既塑性收缩性。混凝土振捣不密实、不均匀、出一蜂窝、麻面、空洞,导致钢筋诱蚀或其它荷载裂缝的起源点。混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件有效高度减小,形成与受力钢筋垂直方向的裂缝等。混凝土的材料合成为水泥、砂、骨料、拌合水以及外加剂,配制混凝土材料不合格,从而导致裂缝出现。砂石含量超标使混凝土干燥时产生不规则的网状裂缝,砂石的级配差常造成侧面裂缝,拌合水以及外加剂中杂质含中过高会对钢筋锈蚀产生影响等。当施工质量低,工艺不合格同样也会产生各种形式裂缝。
2.避免裂缝产生防治的对策
根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用计算机仿真技术对混凝土施工期温度场和温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,制定混凝土在施工期内不产生温度裂缝的温控标准,进行保温养护优化选择。,依据结构受力情况可合理地确定混凝土评定验收龄期,打破正常标准28d的评定验收龄期,改为60d或更多天,评定验收龄期充分考虑混凝土的后期强度,从而减低设计标号,达到减少混凝土水泥用量减低水化热的目的。
采用改善边界约束的构造设计,如遇有约束强的岩石类地基、较厚的混凝土垫层等时,可在接触面上设滑动层来减少温度应力,在外约束的接触面上全部设滑动层,则可大大减弱外约束。采取增配构造钢筋,配筋应尽可能采用小直径、小间距,全截面含筋率控制在0.3%~0.5%之间,在混凝土表面增设金属扩张网等有效措施,有效地提高混凝土抗裂性能。充分利用混凝土在基坑有侧限条件,在混凝土中掺加微膨胀剂,使其在基坑约束下形成一定的预压力,补偿混凝土内部温度,收缩产生的拉应力,从而有效的避免混凝土裂缝的产生。
3.结束语
对于混凝土裂缝的控制是一个综合性的问题,随着当今我们对混凝土耐久性研究的不断深入,材料科学的不断发展和建筑技术水平的不断提高,相信混凝土裂缝问题将会逐渐得以圆满地解决。
参考文献:
[1]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].清华大学出版社,1992.
[2]泵送混凝土施工质量控制和裂缝处理.环球网校.2010-01-22.
[3]迟培云,吕平,周宗辉.现代混凝土技术[M].上海同济大学出版社,1999.