摘要:采用循环伏安法分别在含吡咯+NaClO4的乙腈中和水中,在不锈钢表面制备了聚吡咯(PPy)膜.用扫描电子显微镜观察了PPy膜的表面形貌,用四探针法测量了PPy膜的电导率,用动电位极化曲线和电化学阻抗谱研究了在1 mol/L H2SO4中PPy膜对不锈钢的防腐蚀性能.结果表明,在两种溶剂中制备的PPy膜都由球状粒子组成,但在水中制备的PPy膜结节较多.在乙腈中制备的 PPy的电导率和对不锈钢的防护性能都显著高于在水中制备的PPy.由于乙腈的给电子性较水的小,与吡咯聚合中间体的作用小,链反应较难终止,使得PPy 聚合链共轭度长,膜的缺陷少,电导率大,防腐性能好.
关键词:工程师论文投稿,聚吡咯,不锈钢,防腐蚀,电导率
研究聚吡咯(PPy)的电化学合成及其在金属防腐蚀方面的应用具有重要意义[1].PPy膜不仅能依靠膜层的物理隔离作用阻挡腐蚀性物质到达金属表面,而且还能作为氧化剂使金属钝化[2],从而起到防腐蚀的作用.许多研究都表明,覆盖在金属表面的PPy膜能使可钝化金属表面形成钝化层.如 Hermas A A发现,在硫酸水溶液中制备的PPy膜保护的不锈钢表面就存在稳定的钝化层[3],Tallmand D E采用电化学噪声技术和电化学阻抗谱证实了在3.5%NaCl中的不锈钢/PPy界面存在钝化层[4].在电化学制备PPy时,吡咯先氧化成阳离子自由基,然后发生阳离子自由基偶合,形成PPy[5].溶剂的给电子性对吡咯聚合过程的影响很大.溶剂的给电子性越大,溶剂分子与聚合过程中产生的带正电荷的中间产物的作用就越强烈,导致PPy膜的导电性和力学强度就越低[6].水和有机溶剂都可以用于吡咯的电化学聚合.有机溶剂一般不参加反应、对吡咯的溶解性好、对基体金属的腐蚀性小和电化学窗口宽.常用的有机溶剂有乙腈和1,2丙二醇碳酸酯,支持电解质可采用NaClO4,NaBF4和 R4NClO4.关于在水中制备PPy膜及其对金属防腐蚀性的研究较多,但比较在水中和有机溶剂中制备的PPy膜对金属防腐蚀性能的研究很少.
1实验
采用循环伏安法在304不锈钢(SS,1 cm2)表面制备PPy膜,辅助电极为大面积铂片,参比电极为饱和甘汞电极(SCE),文中的电位均是相对于饱和甘汞电极的电位.在水中制备PPy膜采用的循环伏安电位扫描范围为0~0.8 V.由于吡咯在乙腈中的聚合速度比较小,循环伏安电位扫描范围改为0~0.9 V.电位扫描速度都为0.05 V/s,聚合电量为0.8 C.在0.1 mol/L 吡咯+0.2 mol/L NaClO4的水中制备的PPy标记为PPy(H2O),在0.1 mol/L 吡咯+0.2 mol/L NaClO4的乙腈中制备的PPy标记为PPy(Acn).温度为25±1 ℃.不锈钢表面用01~05号金相砂纸逐级打磨至镜面光亮后,依次用酒精和二次蒸馏水清洗.吡咯经蒸馏提纯后使用.
采用JSM6700F扫描电子显微镜观察PPy膜的形貌,用四探针法测量PPy膜的电导率,用动电位极化曲线和电化学阻抗谱(EIS)测量PPy膜在1 mol/L H2SO4溶液中对不锈钢的防护性能.动电位扫描速度为0.002 V/s.测试阻抗的频率范围为0.01~100 kHz,正弦波信号幅值为8 mV.电化学实验都采用CHI660b电化学工作站进行.
2结果与讨论
2.1循环伏安曲线
图1是不锈钢分别在 0.1 mol/L 吡咯+0.2 mol/L NaClO4的水中和乙腈中的循环伏安曲线.在水中,第一圈循环伏安扫描时的吡咯聚合电位较高,约为0.75 V,聚合电流也较小;随扫描圈数的增加,聚合电位负移至0.6 V,聚合电流也增大.在乙腈中,第一圈循环伏安扫描时的吡咯聚合电位约为0.7 V,也随扫描圈数增加而降低,但降低幅度很小.当扫描圈数较大时,两种溶液在低电位时的氧化还原电流都随扫描圈数增加而增大,这是聚吡咯的自催化作用的结果.在扫描两圈后,不锈钢表面均有黑色的PPy薄膜生成.
2.2PPy膜的电导率
在PPy的聚合过程中,有荷正电的中间产物产生,这种荷正电的中间产物必然会受到溶剂分子的“攻击”,其“攻击”的强弱取决于溶剂的给电子性质.给电子性的大小用给电子数DN (Donor Number)值衡量.水和乙腈的DN值分别为75.3 kJ和59.0 kJ[6].在水和乙腈中制备的PPy膜的电导率分别为0.16 S/cm和1.09 S/cm.水的DN值比乙腈的大,在水中制备的PPy膜的电导率比在乙腈中制备的小.
2.3PPy膜的形貌
图2是PPy膜的扫描电子显微照片.在水中和乙腈中制备的PPy膜的表面形貌相似,都是由球状粒子堆积组成.但由于在水中吡咯聚合电流密度大,PPy生成速度快,使PPy膜的结节较多.
2.4极化曲线
图3为不锈钢和PPy膜保护的不锈钢在1 mol/L H2SO4溶液中的动电位极化曲线.没有PPy膜的不锈钢呈现典型的阳极钝化行为.电极过程为电化学控制的阳极极化曲线,符合iA=icorr [exp(ηa/βa)exp(-ηa/βc)],根据该公式对阳极极化曲线进行非线性拟合[7],所得结果见表1.PPy膜对不锈钢有很好的保护作用.用PPy保护的不锈钢的自腐蚀电位比裸不锈钢高0.8 V以上,自腐蚀电流密度从裸不锈钢的3 580 μA/cm2 分别下降到40 μA/cm2 (水)和9 μA/cm2 (乙腈).因为PPy膜具有氧化还原性[8],能加速不锈钢表面钝化层的形成及其修复,使不锈钢基体的自腐蚀电位较高和自腐蚀电流较小 [7].PPy膜还能机械阻隔腐蚀性物质[9].PPy(ACN)的保护作用比PPy(H2O)好.
2.5电化学阻抗谱 图4是SS/PPy在1 mol/L H2SO4溶液中浸泡不同时间的电化学阻抗谱.实线是根据图5的等效电路拟合的结果.为了研究SS/PPy的阻抗谱,还测量了在0.1 mol/L 吡咯+0.2 mol/L NaClO4的水中制备的Pt/PPy的阻抗谱.
Pt/PPy(H2O)在1 mol/L H2SO4中1 h的阻抗谱几乎在整个实验频率范围内都是一条斜线,说明几乎不发生电化学反应.这是由于Pt不能被PPy氧化,导电性很好,Pt/PPy的界面双电层较大.SS/PPy(H2O)和SS/PPy(ACN)浸1 h的阻抗谱在高频区都为一个压扁的小容抗弧,说明SS/PPy界面发生了电化学反应,即PPy膜发生脱掺杂,PPy+A-+e-→PPy0+A-,不锈钢表面发生氧化,Fe→Fe2+→Fe3+.因此,SS/PPy电极的总电阻主要包括溶液电阻Rs,SS/PPy的界面电荷转移电阻Rct,PPy膜电阻 Rf和不锈钢表面的钝化层电阻Ro[10-11].由于浸泡时间短,PPy保持氧化掺杂状态,导电性比较好,且PPy膜很薄,所以PPy的膜电阻Rf很小[12],Rf和Ro不能明确区分,用R1表示两电阻之和[10].其等效电路如图5的模型1,Cd是SS/PPy界面的双电层电容.按照该等效电路拟合的数据如表2.
随着浸泡时间延长,PPy膜的脱掺杂反应不断进行,不锈钢表面的钝化层不断增厚,钝化层电阻Ro逐渐增加,使得 SS/PPy界面的电荷转移变得更难,界面电荷转移电阻增加.当PPy还原时,ClO4-从PPy膜中脱出,使PPy膜电阻Rf也增加.由于Rf和Ro值增加,可以明确区分,SS/PPy电极的总阻抗主要由三部分组成,SS/PPy界面电化学反应电阻Rct,SS/PPy膜界面的双电层电容Cd,PPy的膜电阻Rf,膜电容Cf和Warbury阻抗,不锈钢表面的钝化层电阻Ro及其电容Co.其等效电路如图5的模型2,按照该等效电路拟合的数据见表3和表 4.
表2 根据等效电路(1)拟合的SS/PPy浸1h的阻抗参数
Tab.2 The EIS parameters of SS/PPy based on equivalent circuit(1) for 1 h
溶剂
Pt/PPy的阻抗谱在整个实验时间内几乎不随浸泡时间增加而发生变化,SS/PPy的Rct在60 d内则随时间增加而增加.这是由于Pt表面与PPy不发生电化学反应,而不锈钢表面被PPy氧化,钝化层随时间增加而增厚.Tallman D E在研究铝合金/聚苯胺在0.35%(NH4)2SO4+0.05%NaCl中的阻抗谱时,也发现Rct随浸泡时间的增加而增加[11].
当SS/PPy(H2O)浸71 d,SS/PPy(ACN)浸90 d,其界面电荷转移电阻都显著减小.这是由于大量水、SO42-和氧穿过PPy膜,到达SS/PPy界面,使不锈钢表面的钝化层减薄或者破坏.PPy膜发生膨胀,孔隙增大,离子在PPy膜中的传输容易,PPy的膜电阻也显著减小.
由表2,表3和表4可知,SS/PPy(ACN)的界面电荷转移电阻Rct远大于SS/PPy(H2O)的Rct,与用极化曲线得到的结论相同.PPy(ACN)膜在1 mol/L H2SO4溶液中对不锈钢的保护时间较PPy(H2O)的长.PPy(ACN)的膜电阻较PPy(H2O)的小,与用四探针法得到的结论相同.
2.6 讨论
吡咯聚合时,吡咯先在不锈钢表面氧化为阳离子自由基,两个阳离子自由基发生偶合形成二聚体.二聚体再被氧化成自由基,又形成四聚体.经过一连串的氧化偶合,聚合度逐渐增大[13].溶剂分子进攻PPy链末端的自由基,使链反应终止[14].乙腈的给电子性比水小,它与中间聚合体的作用小,终止链反应较难,使得聚合链较长.吡咯在水中的聚合电位比乙腈中的低约0.05 V,表明吡咯分子更容易在乙腈中聚合.PPy膜的共轭度大,其电导率也大.因此,在乙腈中制备的PPy膜的电导率大于在水中制备的PPy膜的电导率,并导致PPy(ACN)的防腐蚀性能比PPy(H2O)好.
3结论
乙腈的给电子性比水的小,在乙腈中制备的PPy膜的电导率比在水中制备的PPy膜的大.
在水中和乙腈中制备的PPy膜的表面形貌相似,都为球状粒子,但水中制备的PPy膜的结节较多.
在H2SO4溶液中,不锈钢的的自腐蚀电流密度为3 580 μA cm-2 ,SS/PPy(H2O)的为40 μA cm-2,SS/PPy(ACN)的为9 μA cm-2.
SS/PPy(ACN)的电荷转移电阻比SS/PPy(H2O)的大,且PPy(ACN)膜对不锈钢的保护时间较PPy(H2O)的长.PPy(ACN)对不锈钢的保护效果最好.
参考文献
[1]MARTINS N C T, MOURA E SILVA T, MONTEMOR M F, et al. Electrodeposition and characterization of polypyrrolefilms on aluminium alloy 6061T6[J]. Electrochimica Acta, 2008, 53(14):4754-4763.
[2]NGUYEN T L H, GARCIA B, DESLOUIS C, et al. Corrosion protection and conducting polymers: polypyrrole films on iron[J]. Electrochimica Acta, 2001, 46(26/27):4259-4272.
[3]HERMAS A A, NAKAYAMA M, OGURA K. Formation of stable passive film on stainless steel by electrochemical deposition of polypyrrole[J]. Electrochimica Acta, 2005, 50(18):36403647. [4]TALLMAN D E, PAE Y, CHEN G, et al. Studies of electronically conducting polymers for corrosion inhibition of aluminum and steel[C]//Larry Rupprecht. Conductive Polymers and Plastics: In Industrial Applications. New York: Plastics Design Library, 1999:201-206.